

Welcome to chromosight’s documentation!

Chromosight is a command line tool that uses computer vision to detect patterns on Hi-C chromosomal contact maps. It also exposes a python API for interoperability with other python packages. You can follow chromosight developoment on Github [https://github.com/koszullab/chromosight] .

Tutorial

	Tutorial
	Detection

	Quantification

	Generating custom patterns

	A note on borders and kernels

Demo

	Example use of chromosight quantify
	Input data:

	Getting loop scores

	Analysing loop scores

	Peeking at the input coordinates

	Comparing the distribution of scores

	Using different metrics

	Comparison of loop footprints

	Appendix: Generating a BED2D file

	Plotting chromosight’s output
	View the whole genome matrix

	View a matrix region

	Plot the distribution of scores

	Looking at detected patterns

Reference API

	chromosight
	chromosight package

Indices and tables

	Index

	Module Index

	Search Page

Tutorial

The simplest way to run chromosight without any input data is to use:

chromosight test

Which will download a test dataset and run chromosight on it. This is useful to have a look at the output files.

Detection

chromosight detect takes input in the form of Hi-C matrices in cool format. This command allows to detect patterns on Hi-C maps, such as chromatin loops or domain (e.g. TADS) borders, and report their coordinates.

The following command line can be used to run loop detection (the default pattern):

chromosight detect -t12 sample1.cool results/sample1_loops

The program will run in parallel on 12 threads and write loop coordinates and their pattern matching scores in a file named sample1_loops.tsv inside the results folder. Those scores represent pearson correlation coefficients (i.e. between -1 and 1) between the loop kernel and the detected pattern.
Similarly, to run domain borders detection, one can use:

chromosight detect --pattern borders -t12 sample1.cool results/sample1_borders

Which will write the coordinates and scores of borders in results/sample1_borders.tsv.

At this point, the results folder will also contain files sample1_loops.json and sample1_borders.json, which contain images of the matrix regions around each detected loop or border, respectively. These files are in JSON format, which can be natively loaded in most programming languages.

Chromosight has several command line options which can affect the output format or filter the results based on different criteria. All parameters have sane default values defined for each pattern, which are printed during the run, but these can be overriden using command line options to optimize results if needed. The list of command line options can be shown using:

chromosight --help

Quantification

The chromosight quantify command can be used to assign a pattern matching score to a set of 2D coordinates for an input Hi-C matrix. It will accept coordinates in bed2d format (tab-separated text file with 6 columns without headers, where columns denote chrom1, start1, end1, chrom2, start2, end2), or the output coordinates file chromosight detect. This can be useful to score the same set of coordinates on multiple Hi-C libraries, for instance.

For example, to compute loop scores for the positions detected in sample1.cool for a second sample, one could use:

chromosight quantify results/sample1_loops.tsv sample2.cool results/sample2_loops

Similarly, for borders:

chromosight quantify --pattern=borders results/sample1_borders.tsv sample2.cool results/sample2_borders

These commands will each generate two files in the results directory, named sample2_loops.tsv and sample2_loops.json for the first command, and sample2_borders.tsv and sample2_borders.json for the second. Those files have the same format as the output from chromosight detect.

chromosight quantify can also be useful to compute pattern scores at ChIP-seq peaks, genes, or other features of interest. BEDtools [https://github.com/arq5x/bedtools2] can be used to generate a 2D bed file from an input bed file.

Assuming we have a BED file of cohesin peaks, all 2-way combinations of peaks at distances between 20kb and 1Mb can be retrieved with the following command:

MINDIST=20000
MAXDIST=1000000
bedtools window -a cohesin_peaks.bed -b cohesin_peaks.bed -w $MAXDIST \
 | awk -vmdist=$MINDIST '$1 == $4 && ($5 - $2) >= mdist {print}' \
 | sort -k1,1 -k2,2n -k4,4 -k5,5n \
 > cohesin_combinations_20kb_1Mb.bed2d

To quantify a pattern present only on the diagonal (e.g. borders, hairpins), the following command can be used instead.

paste cohesin_peaks.bed cohesin_peaks.bed > cohesin_combinations_0.bed2d

Generating custom patterns

More advanced users with specific questions or problems may wish to create new patterns and configurations. Both detect and quantify will accept custom patterns through the --kernel-config option. In order to provide a custom pattern, the user needs 2 files:

	A JSON file containing default values for the different detection parameters.

	One or more text files containing the pattern kernel(s) (i.e. matrix) in the form of a dense numeric matrix.

A template configuration can be generated using chromosight generate-config. A preset on which the template will be based can be selected, loops being the default preset. For example, to generate a template config based on the borders pattern, the folowing command can be used:

chromosight generate-config --preset borders demo_pattern

This will generate a JSON file named demo_pattern.json, pre-filled with parameter values from the borders pattern. This JSON file will have the following contents:

{
 "name": "borders",
 "kernels": [
 "demo_pattern.1.txt",
 "demo_pattern.2.txt",
 "demo_pattern.3.txt"
],
 "max_dist": 1,
 "min_dist": 0,
 "max_iterations": 3,
 "max_perc_undetected": 30.0,
 "min_separation": 5000,
 "pearson": 0.3,
 "resolution": 5000
}

The user can edit the configuration parameters in a text editor. Notably, the kernels entry points to 3 files, demo_pattern.[1-3].txt, which have also been created by chromosight generate-config. Those 3 paths are relative to the config, which means the kernel files have to be in the same folder as the JSON config.

When given a config with multiple kernels, chromosight detect will scan the matrix once for each kernel and return the union of all detected coordinates for the different kernels. This is useful when a pattern is asymetric and can be flipped in different orientations, for example.

Kernels matrices are text files and can be edited using external program, or alternatively, the user can use the --click option from generate-config in order to manually build the kernel by double-clicking on relevant regions in a Hi-C matrix.

Note: The --click option will consume lots of RAM as it visualises the entire Hi-C matrix and should be reserved for small or subsetted contact maps.

For example:

chromosight generate-config --click sample1.cool --win-size 15 demo_manual

This command will generate a config file based on the loops template (the default) and will display the contact map sample1.cool. Every time the user double-clicks on a pixel, a window of 15x15 pixels centered on that position is recorded. The operation can be repeated as many times as the user wishes, and when the window is closed, all windows are averaged, a slight gaussian blur is added to reduce the impact of random noise, and the resulting pileup is used as the kernel when writing the config files.

A note on borders and kernels

One constraint in chromosight is that kernels must have an odd number of rows/columns. This is because chromosight always reports the center pixel of each window when computing correlations. For patterns which do not have a central pixel, such as borders which are between two pixels, a choice has to be made when making the kernel. In the case of borders, the kernel is shifted so that the central pixel is always the pixel on the right of the border.

Example use of chromosight quantify

In this notebook, we demonstrate how chromosight quantify can be used to compare chromatin loops between S. cerevisiae cultures arrested in G1 phase vs metaphase. In this notebook, we re-analyse Hi-C data from Garcia-Luis, J., Lazar-Stefanita, L., Gutierrez-Escribano, P. et al., 2019 [https://doi.org/10.1038/s41594-019-0307-x].

Input data:

Files used in this analysis are the output from chromosight quantify. Loop scores were computed on all 2-way combinations from a set of high confidence RAD21 binding sites separated by 10 to 50kb, on two Hi-C datasets at 2kb resolution: One with G1-arrested cells and the other with metaphase-arrested cells.

	scer_w303_g1_2kb_SRR8769554.cool: Hi-C matrix of cells stopped in G1 phase, at 2kb resolution. From Dauban et al. 2020 [https://doi.org/10.1016/j.molcel.2020.01.019]

	scer_w303_mitotic_2kb_merged.cool: Hi-C matrix of metaphasic cells, at 2kb resolution. From Garcia-Luis et al. 2019 [https://doi.org/10.1038/s41594-019-0307-x]

	rad21.bed2d: bed file containing all pairs of positions of RAD21 (cohesin) peaks in metaphasic S. cerevisiae separated by 10-50kb.

Note: see the end of this notebook for an explanation on how to generate a bed2d file from a ChIP-seq bed file.

Getting loop scores

Loop scores at all pairs of positions can be computed using chromosight quantify. However, to ensure scores are comparable, the number of contacts should be similar between matrices. When using cool files, cooler can be used for this operation:

$ cooler info input/scer_w303_mitotic_2kb_merged.cool | grep sum
 "sum": 44048750

$ cooler info input/scer_w303_g1_2kb_SRR8769554.cool | grep sum
 "sum": 5862820

The G1 matrix has around 5.8M contacts whereas the metaphase matrix has 44M. Fortunately, chromosight has a --subsample option, which can be used to bring both matrices to the same coverage before computing scores:

chromosight quantify --pattern loops \
 --subsample 5862820 \
 --win-fmt npy \
 scer_cohesin_peaks.bed2d \
 input/scer_w303_g1_2kb_SRR8769554.cool \
 quantify/rad21_g1

chromosight quantify --pattern loops \
 --subsample 5862820 \
 --win-fmt npy \
 input/scer_cohesin_peaks.bed2d \
 input/scer_w303_mitotic_2kb_merged.cool \
 quantify/rad21_metaphase

For each condition, chromosight quantify generates 2 files:

	A table containing the coordinates and pattern matching scores of all input coordinates.

	A numpy binary file containing a stack of images around the input coordinates. Those images are stored in the same order as the coordinates from the table.

quantify/
 ├── rad21_g1.npy
 ├── rad21_g1.tsv
 ├── rad21_metaphase.npy
 └── rad21_metaphase.tsv

Analysing loop scores

We can now use python to load and compare results from chromosight quantify. Below are a series of analyses showing some examples of downstream processing that can be performed on chromosight results.

[203]:

%config InlineBackend.figure_format = 'svg'
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import scipy.ndimage as ndi
import chromosight.kernels as ck
import scipy.stats as st
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')

res = 2000

[204]:

Load images (vignettes) around RAD21 interactions coordinates
images_g = np.load('quantify/rad21_g1.npy')
images_m = np.load('quantify/rad21_metaphase.npy')

Load lists of RAD21 interactions coordinates with their loop scores
Compute loop size (i.e. anchor distance) for each RAD21 combination
get_sizes = lambda df: np.abs(df.start2 - df.start1)
loops_g = pd.read_csv('quantify/rad21_g1.tsv', sep='\t')
loops_g['loop_size'] = get_sizes(loops_g)
loops_m = pd.read_csv('quantify/rad21_metaphase.tsv', sep='\t')
loops_m['loop_size'] = get_sizes(loops_m)

Merge data from both conditions into a single table
loops_g['condition'] = 'g1'
loops_m['condition'] = 'metaphase'
loops_df = pd.concat([loops_g, loops_m]).reset_index(drop=True)
images = np.concatenate([images_g, images_m])

Remove NaN scores (e.g. in repeated regions or overlap the matrix edge)
nan_mask = ~np.isnan(loops_df['score'])
loops_df = loops_df.loc[nan_mask, :]
images = images = images[nan_mask, :, :]

The loop kernel can be loaded using chromosight.kernels.loops
kernel = np.array(ck.loops['kernels'][0])
pileup_kw = {'vmin': -1, 'vmax': 1, 'cmap': 'seismic'}

Peeking at the input coordinates

Images around RAD21 sites 2-way combinations extracted by chromosight can be viewed using numpy and matplotlib. Note there are series off overlapping and slightly shifted images. This is because of adjacent RAD21 sites which are closer in the genome than the size of the vignettes.

[193]:

Decide how many rows and columns of images to show
r, c = 5, 15
valid_imgs = np.where(~loops_g.score.isnull() & ~loops_g.score.isnull())[0]
fig, axes = plt.subplots(r, c, figsize=(12, 4), subplot_kw={'xticks':[], 'yticks':[]})
Show each image as a greyscale vignette
for i, ax in zip(valid_imgs, axes.flat):
 img = images_g[i, :, :] # Showing examples from the end of the image stack (M phase)
 ax.imshow(img, cmap=plt.cm.gray_r, interpolation='nearest')
plt.suptitle("Intersection between RAD21 sites, G1 phase")

[193]:

Text(0.5, 0.98, 'Intersection between RAD21 sites, G1 phase')

[image: ../_images/notebooks_g1_metaphase_yeast_example_6_1.svg]

[194]:

fig, axes = plt.subplots(r, c, figsize=(12, 4), subplot_kw={'xticks':[], 'yticks':[]})
first_m = np.where(loops_df.condition == 'metaphase')[0][0]
Show each image as a greyscale vignette
for i, ax in zip(valid_imgs, axes.flat):
 img = images_m[i, :, :] # Showing examples from the end of the image stack (M phase)
 ax.imshow(img, cmap=plt.cm.gray_r, interpolation='nearest')
plt.suptitle("Intersection between RAD21 sites, Metaphase")

[194]:

Text(0.5, 0.98, 'Intersection between RAD21 sites, Metaphase')

[image: ../_images/notebooks_g1_metaphase_yeast_example_7_1.svg]

Comparing the distribution of scores

The distribution of chromosight scores (i.e. correlation coefficients with the loop kernel) can be compared between the 2 conditions, revealing that metaphasic cells tend to have stronger loops.

[196]:

sns.violinplot(data=loops_df, x='condition', y='score')
plt.ylabel('chromosight loop score')
plt.title('Comparison of loop scores between G1 and metaphasic cells')
plt.axhline(0, c='grey')

[196]:

<matplotlib.lines.Line2D at 0x7f53f4892a50>

[image: ../_images/notebooks_g1_metaphase_yeast_example_9_1.svg]

Using different metrics

Chromosight scores loops using their pearson correlation with a “loop kernel” (see below). However, one might want to use another metric than chromosight’s score to rank loops. One such metric commonly used in the litterature is the “corner score”, which uses the contrast between the center of the image (C) and the corner (R).

[197]:

import matplotlib.patches as patches
fig, axes = plt.subplots(1, 2, sharex=True, sharey=True)
axes[0].imshow(np.log(kernel), **pileup_kw)
axes[0].set_title("Chromosight's loop kernel")
axes[1].imshow(np.zeros((17, 17)))
center_rect = patches.Rectangle(
 (8-2, 8-2), 4, 4, linewidth=1, edgecolor='r', facecolor='r'
)
corner_rect = patches.Rectangle(
 (17-5, 0), 4, 4, linewidth=1, edgecolor='g', facecolor='g'
)
axes[1].annotate('C', (8, 8), color='w', weight='bold', fontsize=14, ha='center', va='center')
axes[1].annotate('R', (14, 2), color='w', weight='bold', fontsize=14, ha='center', va='center')
axes[1].add_patch(center_rect)
axes[1].add_patch(corner_rect)
axes[1].set_title("Corner score: C - R")

[197]:

Text(0.5, 1.0, 'Corner score: C - R')

[image: ../_images/notebooks_g1_metaphase_yeast_example_11_1.svg]

The function defined below could be used to compute the corner score. It computes the difference between the average of contacts in the center and top right corner. Using the rop right corner is better to avoid contacts enrichments for due to the diagonal. This is a pretty intuitive metric tailored based on expectations we have about loops. Here, we define center and corner radii as 10% of the image radius. For our 17x17 images, this means both regions will be 2+1 = 3x3 pixels.

[198]:

def corner_score(image, prop_radius=0.1):
 """
 Compute a loop intensity score from a pileup

 Parameters

 image : numpy.array of floats
 2D array representing the window around a pattern.
 prop_radius : float
 Proportion of image radius used when selecting
 center and corner contacts.

 Returns

 float :
 Corner score, defined as mean(center) - mean(corner).
 """
 n, m = image.shape
 center = int(prop_radius * n)
 half_h = n // 2
 half_w = m // 2
 le = half_h - center
 ri = half_h + center + 1
 hi = half_w - center
 lo = half_w + center + 1
 center_mean = np.nanmean(image[hi:lo, le:ri])
 top_right_mean = np.nanmean(image[:hi, ri:])
 return center_mean - top_right_mean

This homemade corner score correlates well with chromosight’s pearson score:

[199]:

import scipy.stats as st
loops_df['corner_score'] = [corner_score(m) for m in images]
comp_df = loops_df.loc[
 ~np.isnan(loops_df.corner_score) & ~np.isnan(loops_df.score), :
]
sns.regplot(data=comp_df, x='corner_score', y='score')
plt.title(
 r'Correlation between chromosight and corner score, ρ: '
 f'{np.round(st.pearsonr(comp_df.corner_score, comp_df.score)[0], 2)}')

[199]:

Text(0.5, 1.0, 'Correlation between chromosight and corner score, $\\rho$: 0.71')

[image: ../_images/notebooks_g1_metaphase_yeast_example_15_1.svg]

By computing the pileup (average) of all patterns separately for G1 and M conditions, we can visually appreciate the stronger loop signal in metaphasic cells (M) compared to G1. Computing the chromosight and corner score directly on those pileups shows that the chromosight score makes it easier to discriminate the two conditions. The [-1,1] range is also convenient to interpret results. Note that the chromosight score below is just the pearson coefficient of the pileup with the loop kernel.

[200]:

centroid_g1 = np.apply_along_axis(np.nanmean, 0, images[loops_df.condition == 'g1'])
centroid_m = np.apply_along_axis(np.nanmean, 0, images[loops_df.condition == 'metaphase'])

fig, ax = plt.subplots(1, 2)
ax[0].imshow(np.log(centroid_g1), **pileup_kw)
ax[0].set_title(
 f'G1 corner score: {corner_score(centroid_g1):.2f}\n'
 f'G1 chromosight score: {np.round(st.pearsonr(centroid_g1.flat, kernel.flat)[0], 2)}'
)
ax[1].imshow(np.log(centroid_m), **pileup_kw)
ax[1].set_title(
 f'M corner score: {corner_score(centroid_m):.2f}\n'
 f'M chromosight score: {st.pearsonr(centroid_m.flat, kernel.flat)[0]:.2f}'
)
plt.show()

[image: ../_images/notebooks_g1_metaphase_yeast_example_17_0.svg]

Instead of summarizing the 2 conditions using only pileups, we can compare the ability of both score to separate the G1 and metaphasic cells based on the distribution of all patterns. Note that both scores are z-transformed to make their ranges comparable.

[201]:

corner = comp_df.drop('score', axis=1).rename(columns={'corner_score': 'score'})
corner['metric'] = 'corner score'
corner['score'] = st.zscore(corner['score'])
chromo = comp_df.drop('corner_score', axis=1)
chromo['metric'] = 'chromosight'
chromo['score'] = st.zscore(chromo['score'])
comp_scores = pd.concat([corner, chromo]).reset_index(drop=True)
sns.violinplot(data=comp_scores, x='metric', y='score', split=True, hue='condition', inner='quartile')
plt.ylabel('metric z-score')
plt.title('Discriminative power: chromosight vs corner score')

[201]:

Text(0.5, 1.0, 'Discriminative power: chromosight vs corner score')

[image: ../_images/notebooks_g1_metaphase_yeast_example_19_1.svg]

Comparison of loop footprints

For vizualisation purposes, each window can be summarized to a 1D band representing the sum of columns or rows. Here, we compute both the average of rows and columns, and use the element-wise average of both 1D vectors. This gives a good approximation of a ‘loop footprint’ and is convenient for visualisation.

Each image is centered to its mean to homogenize the overall contact counts in windows. This avoid having globally darker or lighter images and emphasizes relative contrasts within the images.

Bands are then sorted by loop size (i.e. distance between anchors) and plotted as a stack from shortest to longest distance interactions.

[]:

Center images by subtracting their mean
centered = images.copy()
for img in range(centered.shape[0]):
 centered[img] -= np.nanmean(centered[img])

Summarise each image by taking the average of its row and col sums.
bands = (np.nansum(centered, axis=1) + np.nansum(centered, axis=2)) / 2

Reorder bands by distance between anchors
sort_var = 'loop_size'
sorted_bands = bands[np.argsort(loops_df[sort_var]), :]
sorted_cond = loops_df.condition.iloc[np.argsort(loops_df[sort_var])]
sorted_centered = centered[np.argsort(loops_df[sort_var])]

Define a subset to visualise (too many images so see them all at once)
#smallest_group = np.min(np.unique(sorted_cond, return_counts=True)[1])-1
#smallest_group = 500

Define saturation threshold for the colormaps
vmax_bands = np.percentile(bands, 99.9)
vmax_img = np.percentile(centered, 99)

[202]:

fig, axes = plt.subplots(2, 2, figsize=(8, 10))
for i, cond in enumerate(['g1', 'metaphase']):
 axes[0, i].imshow(
 sorted_bands[sorted_cond == cond, :],
 cmap='afmhot_r',
 vmax=vmax_bands,
)
 axes[0, i].set_title(cond)
 # Compute pileup by averaging all windows for each condition
 centroid = np.apply_along_axis(
 np.nanmean,
 0,
 images[loops_df.condition == cond],
)
 axes[1, i].imshow(np.log(centroid), **pileup_kw)
 axes[0,i].set_aspect('auto')
 # The rest is just to improve figure aesthetics
 axes[0, i].set_xticks([])
 axes[1, i].set_yticks([])
 if i > 0:
 axes[0, i].set_yticks([])
 else:
 #axes[0, i].set_yticklabels([], ["10kb", "25kb", "50kb"])
 axes[0, i].set_yticks(
 [0, sorted_bands[sorted_cond == cond, :].shape[0]]
)
 axes[0, i].set_yticklabels(
 ['10kb', '50kb'],
 minor=False,
 rotation=45
)

 axes[1, i].set_xticks([0, centroid.shape[0] // 2, centroid.shape[0]])
 half_w = int((res * centroid.shape[0] // 2) / 1000)
 half_w_bp = int(half_w * res / 1000)
 axes[1, i].set_xticklabels([f"{-half_w_bp}kb", "0", f"{half_w_bp}kb"])
 #axes[1, i].set_title(f"corner score: {np.round(corner_score(centroid), 2)}")

axes[0, 0].set_ylabel('Distance between RAD21 sites')
axes[1, 0].set_ylabel('Loop pileups')
plt.suptitle(f'Loop bands for pairs of RAD21 sites')
#plt.savefig('figs/bands_pileup_prots.svg')

[202]:

Text(0.5, 0.98, 'Loop bands for pairs of RAD21 sites')

[image: ../_images/notebooks_g1_metaphase_yeast_example_22_1.svg]

Appendix: Generating a BED2D file

ChIP-seq peaks are often stored as BED files, containing genomic intervals where DNA-binding proteins are enriched. Such files can be used to generate a BED2D file for chromosight quantify. This is done by generating all possible 2-ways combinations of peaks that follow desired criteria. In the example below, we use bedtools and awk to generate all intrachromosomal combinations where peaks are separated by more than 10kb and less than 50kb.

MINDIST=10000
MAXDIST=50000
bedtools window -a input/scer_cohesin_peaks.bed \
 -b input/scer_cohesin_peaks.bed \
 -w $MAXDIST \
 | awk -vmd=$MINDIST '$1 == $4 && ($5 - $2) >= md {print}' \
 | sort -k1,1 -k2,2n -k4,4 -k5,5n \
 > input/scer_cohesin_peaks.bed2d

Plotting chromosight’s output

Chromosight generates tabular text files with loops coordinates and scores. This file can be loaded into your favorite scripting language for visualization. For the purpose of this demonstration, we show how to plot the contact maps with detected coordinates using python, pandas and cooler.

The data shown here was generated with the following commands:

chromosight detect data_test/example.cool -m8000 -M50000 -p0.35 detect/example_loops
chromosight detect data_test/example.cool --pattern borders detect/example_borders
chromosight detect data_test/example.cool --pattern hairpins detect/example_hairpins

Which will detect all loops of size 8-50kb in example.cool and filter those with a score above 0.35. The output files will be located in the detect/ folder.

[35]:

%config InlineBackend.figure_format = 'svg'
import re
import json
import numpy as np
import pandas as pd
import cooler
import matplotlib.pyplot as plt
import chromosight.utils.detection as cud

Load detected patterns' tables
loops = pd.read_csv('detect/example_loops.tsv', sep='\t')
borders = pd.read_csv('detect/example_borders.tsv', sep='\t')
hairpins = pd.read_csv('detect/example_hairpins.tsv', sep='\t')

Load Hi-C data in cool format
c = cooler.Cooler("../../data_test/example.cool")

View the whole genome matrix

To plot the whole matrix with patterns, the matrix is extracted from the cool file and columns bin1 and bin2 are used. Those columns contain the genome-wide bin number of pattern coordinates, and matches the whole genome matrix. Plotting the whole genome is straightforward, but likely to take too much memory for larger genomes.

[36]:

%matplotlib inline
Plot the whole matrix
plt.figure(figsize=(10, 10))
mat = c.matrix(sparse=False, balance=True)[:]
plt.imshow(mat ** 0.2, cmap='afmhot_r')
plt.scatter(loops.bin2, loops.bin1, edgecolors='blue', facecolors='none', label='loops')
plt.scatter(borders.bin2, borders.bin1, c='lightblue', label='borders')
plt.scatter(hairpins.bin2, hairpins.bin1, c='green', label='hairpins')
plt.legend()
plt.show()

[image: ../_images/notebooks_plot_output_4_0.svg]

View a matrix region

To reduce the amount of memory required, we can define a region of interest. The corresponding matrix region can be fetched from the cool file using cooler, and patterns falling within that region can be filtered using pandas. Since we want to overlay the patterns on top of the region matrix, the bin1 and bin2 columns should be adjusted to be relative to the region’s start instead of the genome.

[]:

def subset_region(df, region):
 """
 Given a pattern dataframe and UCSC region string, retrieve only patterns in that region.
 """
 # Split the region string at each occurence of - or : (yields 3 elements)
 chrom, start, end = re.split('[-:]', region)
 start, end = int(start), int(end)
 # Only keep patterns on the same chromosome as the region and
 # within the start-end interval
 subset = df.loc[
 (df.chrom1 == chrom) &
 (df.chrom2 == chrom) &
 (df.start1 >= start) &
 (df.start2 >= start) &
 (df.end1 < end) &
 (df.end2 < end), :
]
 return subset

[37]:

Select a region of interest
region = 'chr2:200000-300000'
mat = c.matrix(sparse=False, balance=True).fetch(region)

loops_sub = subset_region(loops, region)
borders_sub = subset_region(borders, region)
hairpins_sub = subset_region(hairpins, region)

Make genome-based bin numbers relative to the region
for df in [loops_sub, borders_sub, hairpins_sub]:
 df.bin1 -= c.extent(region)[0]
 df.bin2 -= c.extent(region)[0]

[38]:

%matplotlib inline
plt.figure(figsize=(7, 7))
plt.imshow(np.log10(mat), cmap='afmhot_r')
plt.scatter(loops_sub.bin2, loops_sub.bin1, edgecolors='blue', facecolors='none', label='loops')
plt.scatter(borders_sub.bin2, borders_sub.bin1, c='lightblue', label='borders')
plt.scatter(hairpins_sub.bin2, hairpins_sub.bin1, c='green', label='hairpins')
plt.legend()
plt.show()

[image: ../_images/notebooks_plot_output_8_0.svg]

Plot the distribution of scores

Scores of detected patterns are provided as Pearson correlation coefficient with the template and are stored in the ‘score’ column of the tabular output. Their distribution can be viewed with regular histogram functions. Since we use a threshold for detection (the --pearson option in the command line interface), the score lower end of the distribution will be truncated at this threshold.

Different patterns will have different score distributions and default thresholds.

[39]:

%matplotlib inline
plt.figure(figsize=(8, 8))
fig, ax = plt.subplots(3, 1, sharex=True)
for i, (df, pat) in enumerate(zip([loops, borders, hairpins], ['loops', 'borders', 'hairpins'])):
 ax[i].hist(df.score, 20)
 ax[i].set_title(pat)
plt.tight_layout()

<Figure size 576x576 with 0 Axes>

[image: ../_images/notebooks_plot_output_10_1.svg]

Looking at detected patterns

Windows around detected patterns in the processed matrix are stored in the JSON / npy file when running chromosight’s detect or quantify commands. These windows are in the same order as the coordinates in the output table.

[40]:

Load input json file into a dictionary
loop_wins = json.load(open('detect/example_loops.json', 'r'))
Note that keys are string, as required by the JSON format,
so we convert them to int() for convenience
loop_wins = {int(i): np.array(w) for i, w in loop_wins.items()}
Make an empty 3D array of shape N_coords x height x width
wins = np.zeros((len(loop_wins.items()), *loop_wins[0].shape))
Fill the 3D array with windows values
for i, w in loop_wins.items(): wins[i] = w

For example, we can plot the best 40 windows around detected loops ordered by score:

[41]:

%matplotlib inline
plt.figure(figsize=(10, 10))

fig, ax = plt.subplots(8, 5, figsize=(8, 12))

for i, n in enumerate(np.argsort(loops.score)[39::-1]):
 m, s = np.nanmean(loop_wins[n]), np.nanstd(loop_wins[n])
 ax.flat[i].imshow((loop_wins[n] - m) / s, cmap='afmhot_r', vmax=4)
 ax.flat[i].set_title(f'{loops.score[n]:.2f}')
 ax.flat[i].set_xticks([])
 ax.flat[i].set_yticks([])
plt.tight_layout()

<Figure size 720x720 with 0 Axes>

[image: ../_images/notebooks_plot_output_14_1.svg]

The pileup can also be re-computed from these windows using chromosight’s helper function. This is useful to plot the pileup for a subset of the detected patterns, or just to generate the pileup plot with different aesthetics.

[42]:

%matplotlib inline
plt.figure(figsize=(4, 4))
pileup = cud.pileup_patterns(wins)
plt.imshow(pileup, cmap='coolwarm', vmax=1.8, vmin=0)

[42]:

<matplotlib.image.AxesImage at 0x7f571dcb6f50>

[image: ../_images/notebooks_plot_output_16_1.svg]

chromosight

	chromosight package
	Subpackages
	chromosight.cli package
	Submodules

	chromosight.cli.chromosight module

	chromosight.cli.score module

	Module contents

	chromosight.kernels package
	Module contents

	chromosight.utils package
	Submodules

	chromosight.utils.contacts_map module

	chromosight.utils.detection module

	chromosight.utils.io module

	chromosight.utils.plotting module

	chromosight.utils.preprocessing module

	chromosight.utils.stats module

	Module contents

	Submodules

	chromosight.version module

	Module contents

chromosight package

Subpackages

	chromosight.cli package
	Submodules

	chromosight.cli.chromosight module

	chromosight.cli.score module

	Module contents

	chromosight.kernels package
	Module contents

	chromosight.utils package
	Submodules

	chromosight.utils.contacts_map module

	chromosight.utils.detection module

	chromosight.utils.io module

	chromosight.utils.plotting module

	chromosight.utils.preprocessing module

	chromosight.utils.stats module

	Module contents

Submodules

chromosight.version module

Module contents

chromosight.cli package

Submodules

chromosight.cli.chromosight module

Pattern exploration and detection

Explore and detect patterns (loops, borders, centromeres, etc.) in Hi-C contact
maps with pattern matching.

	Usage:

	
	chromosight detect [–kernel-config=FILE] [–pattern=loops]

	[–pearson=auto] [–win-size=auto] [–iterations=auto]
[–win-fmt={json,npy}] [–norm={auto,raw,force}]
[–subsample=no] [–inter] [–tsvd] [–smooth-trend]
[–n-mads=5] [–min-dist=0] [–max-dist=auto]
[–no-plotting] [–min-separation=auto] [–dump=DIR]
[–threads=1] [–perc-zero=auto]
[–perc-undetected=auto] <contact_map> <prefix>

	chromosight generate-config [–preset loops] [–click contact_map]

	[–norm={auto,raw,norm}] [–win-size=auto] [–n-mads=5]
[–chroms=CHROMS] [–inter] [–threads=1] <prefix>

	chromosight quantify [–inter] [–pattern=loops] [–subsample=no]

	[–win-fmt=json] [–kernel-config=FILE] [–norm={auto,raw,norm}]
[–threads=1] [–n-mads=5] [–win-size=auto]
[–perc-undetected=auto] [–perc-zero=auto]
[–no-plotting] [–tsvd] <bed2d> <contact_map> <prefix>

chromosight list-kernels [–long] [–mat] [–name=kernel_name]
chromosight test

	detect:

	performs pattern detection on a Hi-C contact map via template matching

	generate-config:

	Generate pre-filled config files to use for detect and quantify.
A config consists of a JSON file describing parameters for the
analysis and path pointing to kernel matrices files. Those matrices
files are tsv files with numeric values as kernel to use for
convolution.

	quantify:

	Given a list of pairs of positions and a contact map, computes the
correlation coefficients between those positions and the kernel of the
selected pattern.

	list-kernels:

	Prints information about available kernels.

	test:

	Download example data and run loop detection on it.

	Arguments for detect:

	
	contact_map The Hi-C contact map to detect patterns on, in

	cool format.

	prefix Common path prefix used to generate output files.

	Extensions will be added for each file.

	Arguments for quantify:

	
	bed2d Tab-separated text files with columns chrom1, start1

	end1, chrom2, start2, end2. Each line correspond to
a pair of positions (i.e. a position in the matrix).

contact_map Path to the contact map, in cool format.
prefix Common path prefix used to generate output files.

Extensions will be added for each file.

	Arguments for generate-config:

	
	prefix Path prefix for config files. If prefix is a/b,

	files a/b.json and a/b.1.txt will be generated.
If a given pattern has N kernel matrices, N txt
files are created they will be named a/b.[1-N].txt.

	-e, --preset=loops

	Generate a preset config for the given pattern.
Preset configs available are “loops” and
“borders”. [default: loops]

	-c, --click=contact_map

	Show input contact map and uses double clicks from
user to build the kernel. Warning: memory-heavy,
reserve for small genomes or subsetted matrices.

	-C, --chroms=CHROMS

	Comma-separated list of chromosome names. When used
with –click, this will show each chromosome’s
one-by-one sequentially instead of the whole genome.
This is useful to reduce memory usage.

	Arguments for list-kernels:

	
	--name=kernel_name

	Only show information related to a particular
kernel.[default: all]

	--long

	Show default parameters in addition to kernel names.

	--mat

	Prints an ascii representation of the kernel matrix.

	Basic options:

	
	-h, --help

	Display this help message.

	--version

	Display the program’s current version.

	--verbose

	Displays the logo.

	-n, –norm={auto,raw,force} Normalization / balancing behaviour. auto: weights

	present in the cool file are used. raw: raw contact
values are used. force: recompute weights and
overwrite existing values. raw[default: auto]

	-I, --inter

	Enable to consider interchromosomal contacts.
Warning: Experimental feature with high memory
consumption, only use with small matrices.

	-m, --min-dist=auto

	Minimum distance from the diagonal (in base pairs).
at which detection should operate. [default: auto]

	-M, --max-dist=auto

	Maximum distance from the diagonal (in base pairs)
for detection. [default: auto]

	-P, --pattern=loops

	Which pattern to detect. This will use preset
configurations for the given pattern. Possible
values are: loops, loops_small, borders, hairpins and
centromeres. [default: loops]

	-p, --pearson=auto

	Pearson correlation threshold when detecting patterns
in the contact map. Lower values leads to potentially
more detections, but more false positives. [default: auto]

	-s, --subsample=INT

	If greater than 1, subsample INT contacts from the
matrix. If between 0 and 1, subsample a proportion of
contacts instead. Useful when comparing matrices with
different coverages. [default: no]

-t, –threads=1 Number of CPUs to use in parallel. [default: 1]
-u, –perc-undetected=auto Maximum percentage of non-detectable pixels (nan) in

windows allowed to report patterns. [default: auto]

	-z, --perc-zero=auto

	Maximum percentage of empty (0) pixels in windows
allowed to report patterns. [default: auto]

	Advanced options:

	
	-d, --dump=DIR

	Directory where to save matrix dumps during
processing and detection. Each dump is saved as
a compressed npz of a sparse matrix and can be
loaded using scipy.sparse.load_npz.

	-i, --iterations=auto

	How many iterations to perform after the first
template-based pass. [default: 1]

	-k, --kernel-config=FILE

	Optionally give a path to a custom JSON kernel
config path. Use this to override pattern if
you do not want to use one of the preset
patterns.

	--no-plotting

	Disable generation of pileup plots.

	-N, –n-mads=5 Maximum number of median absolute deviations below

	the median of the bin sums distribution allowed to
consider detectable bins. [default: 5]

	-S, --min-separation=auto

	Minimum distance required between patterns, in
basepairs. If two patterns are closer than this
distance in both axes, the one with the lowest
score is discarded. [default: auto]

	-T, --smooth-trend

	Use isotonic regression when detrending to reduce
noise at long ranges. Do not enable this for circular
genomes.

	-V, --tsvd

	Enable kernel factorisation via truncated svd.
Accelerates detection, at the cost of slight
inaccuracies. Singular matrices are truncated to
retain 99.9% of the information in the kernel.

	-w, –win-fmt={json,npy} File format used to store individual windows

	around each pattern. Window order matches
patterns inside the associated text file.
Possible formats are json and npy. [default: json]

	-W, --win-size=auto

	Window size (width), in pixels, to use for the
kernel when computing correlations. The pattern
kernel will be resized to match this size. Linear
linear interpolation is used to fill between pixels.
If not specified, the default kernel size will
be used instead. [default: auto]

	
chromosight.cli.chromosight.capture_ouput(stderr_to=None)

	Capture the stderr of the test run.

	
chromosight.cli.chromosight.cmd_detect(args)

	

	
chromosight.cli.chromosight.cmd_generate_config(args)

	

	
chromosight.cli.chromosight.cmd_list_kernels(args)

	

	
chromosight.cli.chromosight.cmd_quantify(args)

	

	
chromosight.cli.chromosight.cmd_test(args)

	

	
chromosight.cli.chromosight.logo_version(logo, ver)

	

	
chromosight.cli.chromosight.main()

	

chromosight.cli.score module

Module contents

chromosight.kernels package

Chromosight’s kernel submodule contains each default kernel in the form of a
dictionary whith the kernel name. The items of the dictionaries are the
key-value pairs from the kernel’s json file, with the kernel matrices
pre-loaded under the “kernels” key. Here is the kernel submodule can be used to
extract the first borders kernel:

import chromosight.kernels as ck
kernel = ck.borders['kernels'][0]

Module contents

Chromosight’s kernel submodule contains each default kernel in the form of a
dictionary whith the kernel name. The items of the dictionaries are the
key-value pairs from the kernel’s json file, with the kernel matrices
pre-loaded under the “kernels” key. Here is the kernel submodule can be used to
extract the first borders kernel:

import chromosight.kernels as ck
kernel = ck.borders['kernels'][0]

A list of all available kernel names can also be accessed directly:

import chromosight.kernels as ck
names = ck.kernel_names

chromosight.utils package

Submodules

chromosight.utils.contacts_map module

Chromosight’s contact_map submodule contains classes to keep track of the
different aspects of Hi-C data and automate standard pre-processing steps. The
ContactMap class holds the whole genome informations and metadata (chromosome
sizes, resolution, etc) without loading the actual contact map. Upon calling
its “make_sub_matrices” method, it will generate a collection of ContactMap
instances accessible via the sub_mats attribute. Each instance corresponds to
an inter- or intra-chromosomal matrix and the Hi-C matrix of each chromosome is
loaded and preprocessed upon instantiation.

	
class chromosight.utils.contacts_map.ContactMap(clr, extent, name='', detectable_bins=None, inter=False, max_dist=None, largest_kernel=0, dump=None, smooth=False, sample=None, use_norm=True)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Class to store and manipulate a simple Hi-C matrix, either intra or
inter-chromosomal.

	clrcooler.Cooler

	Reference to a cooler object containing Hi-C data.

	extentlist of tuples of ints

	List of two tuples containing the start and end bin numbers of both
chromosomes from the submatrix.

	matrixscipy.sparse.csr_matrix

	The contact map as a sparse matrix.

	detectable_binstuple of arrays

	List containing two arrays (rows and columns) of indices from bins
considered detectable in the matrix.

	interbool

	True if the matrix represents contacts between two different chromosomes,
False otherwise.

	max_distint

	Maximum distance (in bins) at which contact values should be analysed.
Only valid for intrachromosomal matrices.

	dumpstr

	Base path where dump files will be generated. None means no dump.

	namestr

	Name of the submatrix (used for dumping).

	smoothbool

	Whether isotonic regression should be used to smooth the signal for
detrending. This will reduce noise at long ranges but assumes contacts
can only decrease with distance from the diagonal. Do not use with
circular chromosomes.

	sampleint, float or None

	Proportion of contacts to sample from the data if between 0 and 1.
Number of contacts to keep if above 1. Keep all if None.

	use_normbool

	Whether to use the balanced matrix. If set to False, the raw contact
counts are used.

	
create_mat()

	

	
destroy_mat()

	Destroys contact map to clean up memory

	
detrend(**kwargs)

	Executed at run time of the wrapped method.
Executes the input function with its arguments, then dumps the
matrix to target path. Note args[0] will always denote the instance
of the wrapped method.

	
keep_distance

	

	
preprocess_inter_matrix(**kwargs)

	Executed at run time of the wrapped method.
Executes the input function with its arguments, then dumps the
matrix to target path. Note args[0] will always denote the instance
of the wrapped method.

	
preprocess_intra_matrix()

	

	
remove_diags(**kwargs)

	Executed at run time of the wrapped method.
Executes the input function with its arguments, then dumps the
matrix to target path. Note args[0] will always denote the instance
of the wrapped method.

	
subsample(**kwargs)

	Executed at run time of the wrapped method.
Executes the input function with its arguments, then dumps the
matrix to target path. Note args[0] will always denote the instance
of the wrapped method.

	
class chromosight.utils.contacts_map.DumpMatrix(dump_name)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

This class is used as a decorator to wrap ContactMap’s methods and generate
dump files of the “matrix” atribute. The matrix should be a scipy.sparse
matrix and will be saved in npy format. The full dump path will be:

inst.dump / os.path.basename(inst.name) + self.dump_name + “.npy”

Where inst is the ContactMap instance of the wrapped method and self is the
DumpMatrix instance. If the inst has no dump attribute, no action is
performed.

	Parameters

	dump_name (str [https://docs.python.org/3/library/stdtypes.html#str], os.PathLike object or None [https://docs.python.org/3/library/constants.html#None]) – The basename of the file where to save the dump. If None, no action is
performed.

	
class chromosight.utils.contacts_map.HicGenome(path, inter=False, kernel_config=None, dump=None, smooth=False, sample=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Class used to manage relationships between whole genome and intra- or
inter- chromosomal Hi-C sub matrices. Also handles reading and writing
data.

	clrcooler.Cooler

	Cooler object containing Hi-C data and related informations for
the whole genome

	sub_matspandas.DataFrame

	Table containing intra- and optionally inter-chromosomal matrices.

	detectable_binsarray of ints

	Array containing indices of detectable rows and columns.

	binspandas.DataFrame

	Table containing bin related informations.

	interbool

	Whether interchromosomal matrices should be stored.

	kernel_configdict

	Kernel configuration associated with the Hi-C genome

	max_distint

	Maximum scanning distance for convolution during pattern detection.

	dumpstr

	Base path where dump files will be generated. None means no dump.

	smoothbool

	Whether isotonic regression should be used to smooth the signal for
detrending intrachromosomal sub matrices. This will reduce noise at
long ranges but assumes contacts can only decrease with distance from
the diagonal. Do not use with circular chromosomes.

	sampleint, float or None

	Proportion of contacts to sample from the data if between 0 and 1.
Number of contacts to keep if above 1. Keep all if None.

	
bins_to_coords(bin_idx)

	Converts a list of bin IDs to genomic coordinates based on the whole
genome contact map.

	Parameters

	bin_idx (numpy.array of ints) – A list of bin numbers corresponding to rows or columns of the whole
genome matrix.

	Returns

	A subset of the bins dataframe, with columns chrom, start, end
where chrom is the chromosome name (str), and start and end are the
genomic coordinates of the bin (int).

	Return type

	pandas.DataFrame

	
compute_max_dist()

	Use the kernel config to compute max_dist

	
coords_to_bins(coords)

	Converts genomic coordinates to a list of bin ids based on the whole
genome contact map.

	Parameters

	coords (pandas.DataFrame) – Table of genomic coordinates, with columns chrom, pos.

	Returns

	Indices in the whole genome matrix contact map.

	Return type

	numpy.array of ints

	
gather_sub_matrices()

	Gathers all processed sub_matrices into a whole genome matrix

	
get_full_mat_pattern(chr1, chr2, patterns)

	Converts bin indices of a list of patterns from an submatrix into their
value in the original full-genome matrix.

	Parameters

	
	chr1 (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the first chromosome of the sub matrix (rows).

	chr2 (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the second chromosome of the sub matrix (cols).

	pattern (pandas.DataFrame) – A dataframme of pattern coordinates. Each row is a pattern and
columns should be bin1 and bin2, for row and column coordinates in
the Hi-C matrix, respectively.

	Returns

	full_patterns – A dataframe similar to the input, but with bins shifted to
represent coordinates in the whole genome matrix.

	Return type

	pandas.DataFrame

	
get_sub_mat_pattern(chr1, chr2, patterns)

	Converts bin indices of a list of patterns from the whole genome matrix
into their value in the desired intra- or inter-chromosomal sub-matrix.

	Parameters

	
	chr1 (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the first chromosome of the sub matrix (rows).

	chr2 (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the second chromosome of the sub matrix (cols).

	pattern (pandas.DataFrame) – A dataframme of pattern coordinates. Each row is a pattern and
columns should be bin1 and bin2, for row and column coordinates in
the Hi-C matrix, respectively.

	Returns

	full_patterns – A dataframe similar to the input, but with bins shifted to
represent coordinates in the target sub-matrix.

	Return type

	pandas.DataFrame

	
make_sub_matrices()

	Generates a table of Hi-C sub matrices. Each sub matrix is either intra
or interchromosomal. The table has 3 columns: chr1, chr2 and
contact_map. The contact_map column contains instances of the
ContactMap class.

	Returns

	The table of sub matrices which will contain n_chrom rows if the
inter attribute is set to false, or (n_chrom^2) / 2 + n_chroms / 2
if inter is True (that is, the upper triangle matrix).

	Return type

	pandas.DataFrame

	
normalize(norm='auto', n_mads=5, threads=1)

	If the instance’s cooler is not balanced, finds detectable bins and
applies ICE normalisation to the whole genome matrix. Newly computed
biases are stored in the input file. If it is already balanced,
detectable bins and weights will be extracted from the file.

	Parameters

	
	force_norm (str [https://docs.python.org/3/library/stdtypes.html#str]) – Normalization behaviour. If ‘auto’, existing weights are reused and
matrix is balanced only in the absence of weights. If ‘raw’, raw
contact values are used. If ‘force’, weights are recomputed and the
underlying cool file is overwritten.

	n_mads (float [https://docs.python.org/3/library/functions.html#float]) – Maximum number of median absoluted deviations (MADs) below the
median of the distribution of logged bin sums to consider a bin
detectable.

	threads (int [https://docs.python.org/3/library/functions.html#int]) – Number of parallel threads to use for normalization.

chromosight.utils.detection module

Chromosight’s detection submodule implements the bulk of chromosight
convolution engine, as well as functions to perform the different steps of the
detection algorithm (pre-processing, local maxima, post-processing…). The
pattern_detector function orchestrate all those different steps.

	
chromosight.utils.detection.filter_foci(foci_mat, min_size=2)

	Given an input matrix of labelled foci (continuous islands of equal nonzero
values), filters out foci consisting of fewer pixels than min_size.

	Parameters

	
	foci_mat (scipy.sparse.coo_matrix) – Input matrix of labelled foci. Pixels are numbered according to their
respective foci. Pixels that are not assigned to a focus are 0.

	min_size (int [https://docs.python.org/3/library/functions.html#int]) – Minimum number of pixels required to keep a focus. Pixels belonging to
smaller foci will be set to 0.

	Returns

	
	num_filtered (int) – Number of foci remaining after filtering.

	filtered_mat (scipy.sparse.coo_matrix) – Matrix of filtered foci.

	
chromosight.utils.detection.label_foci(matrix)

	Given a sparse matrix of 1 and 0 values, find
all foci of continuously neighbouring positive pixels
and assign them a label according to their focus. Horizontal
and vertical (4-way) adjacency is considered.

	Parameters

	matrix (scipy.sparse.coo_matrix of ints) – The input matrix where to label foci. Should be filled with 1
and 0s.

	Returns

	
	num_foci (int) – Number of individual foci identified.

	foci_mat (scipy.sparse.coo_matrix:) – The matrix with values replaced by their respective foci
labels.

Example

>>> M.todense()
array([[1 0 0 0]
 [1 0 1 0]
 [1 0 1 1]
 [0 0 0 0]])
>>> num_foci, foci_mat = label_foci(M)
>>> num_foci
2
>>>foci_mat.todense()
array([[1 0 0 0]
 [1 0 2 0]
 [1 0 2 2]
 [0 0 0 0]])

	
chromosight.utils.detection.normxcorr2(signal, kernel, max_dist=None, sym_upper=False, full=False, missing_mask=None, missing_tol=0.75, tsvd=None, pval=False)

	Computes the normalized cross-correlation of a dense or sparse signal and a
dense kernel. The resulting matrix contains Pearson correlation
coefficients.

	Parameters

	
	signal (scipy.sparse.csr_matrix or numpy.array) – The input processed Hi-C matrix.

	kernel (numpy.array) – The pattern kernel to use for convolution.

	max_dist (int [https://docs.python.org/3/library/functions.html#int]) – Maximum scan distance, in number of bins from the diagonal. If None,
the whole matrix is convoluted. Otherwise, pixels further than this
distance from the diagonal are set to 0 and ignored for performance.
Only useful for intrachromosomal matrices.

	sym_upper (False) – Whether the matrix is symmetric and upper triangle. True for
intrachromosomal
matrices.

	missing_mask (scipy.sparse.csr_matrix of bool or None [https://docs.python.org/3/library/constants.html#None]) – Matrix defining which pixels are missing (1) or not (0).

	full (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, convolutions will be made in ‘full’ mode; the matrix is first
padded with margins to allow scanning to the edges, and missing bins
are also masked to exclude them when computing correlation scores.
Computationally intensive

	missing_mask – Mask matrix denoting missing bins, where missing is denoted as True and
valid as False. Can be None to ignore missing bin information. Only
taken into account when full=True.

	missing_tol (float [https://docs.python.org/3/library/functions.html#float]) – Proportion of missing values allowed in windows to keep the correlation
coefficients.

	tsvd (float [https://docs.python.org/3/library/functions.html#float] or None [https://docs.python.org/3/library/constants.html#None]) – If a float between 0 and 1 is given, the input kernel is factorised
using truncated SVD, keeping enough singular vectors to retain this
proportion of information. Factorisation speeds up convolution at
the cost of a loss of information. If the number of singular vectors
required to retain the desired information isDisabled by default.

	pval (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to return a matrix of p-values.

	Returns

	
	scipy.sparse.csr_matrix or numpy.array – The sparse matrix of correlation coefficients. Same type as the input
signal.

	scipy.sparse.csr_matrix or numpy.array or None – A map of Benjamini-Hochberg corrected p-values (q-values). Same type as
the input signal. If pval=False, this will be None.

	
chromosight.utils.detection.pattern_detector(contact_map, kernel_config, kernel_matrix, coords=None, dump=None, full=False, tsvd=None)

	Detect patterns in a contact map by kernel matching, and extract windows
around the detected patterns. If coordinates are provided, detection is
skipped and windows are extracted around those coordinates.

	Parameters

	
	contact_map (ContactMap object) – An object containing an inter- or intra-chromosomal Hi-C contact map
and additional metadata.

	kernel_config (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The kernel configuration, as documented in
chromosight.utils.io.load_kernel_config

	kernel_matrix (numpy.array) – The kernel matrix to use for convolution as a 2D numpy array

	coords (numpy.array of ints or None [https://docs.python.org/3/library/constants.html#None]) – A table with coordinates of patterns, with one pattern per row
and 2 columns being the row and column number of the pattern in
the input contact map. If this is provided, detection is skipped
and quantification is performed on those coordinates.

	dump (str [https://docs.python.org/3/library/stdtypes.html#str] or None [https://docs.python.org/3/library/constants.html#None]) – Folder in which dumps should be generated after each step of the
detection process. If None, no dump is generated

	tsvd (float [https://docs.python.org/3/library/functions.html#float] or None [https://docs.python.org/3/library/constants.html#None]) – If a float between 0 and 1 is given, the input kernel is factorised
using truncated SVD, keeping enough singular vectors to retain this
proportion of information. Factorisation speeds up convolution at
the cost of a loss of information. If the number of singular vectors
required to retain the desired information is disabled by default.

	Returns

	
	filtered_chrom_patterns (pandas.DataFrame) – A table of detected patterns with 4 columns: bin1, bin2, score, qvalue.

	chrom_pattern_windows (numpy array) – A 3D array containing the pile of windows around detected patterns.

	
chromosight.utils.detection.pick_foci(mat_conv, pearson, min_size=2)

	Pick coordinates of local maxima in a sparse 2D convolution heatmap. A
threshold computed based on the pearson argument is applied to the heatmap.
All values below that threshold are set to 0. The coordinate of the maximum
value in each focus (contiguous region of high values) is returned.

	Parameters

	
	mat_conv (scipy.sparse.coo_matrix of floats) – A 2D sparse convolution heatmap.

	pearson (float [https://docs.python.org/3/library/functions.html#float]) – Minimum correlation coefficient required to consider a pixel as
candidate. Increasing this value reduces the amount of false
positive patterns.

	min_size (int [https://docs.python.org/3/library/functions.html#int]) – Minimum number of pixels required to keep a focus. Pixels belonging to
smaller foci will be set to 0.

	Returns

	
	foci_coords (numpy.array of ints) – 2D array of coordinates for identified patterns corresponding to
foci maxima. None is no pattern was detected.

	labelled_mat (scipy.sparse.coo_matrix) – The map of detected foci. Pixels which were assigned to a focus are
given an integer as their focus ID. Pixels not assigned to a focus
are set to 0.

	
chromosight.utils.detection.pileup_patterns(pattern_windows)

	Generate a pileup (arithmetic mean) from a stack of pattern windows.

	Parameters

	pattern_windows (numpy.array of floats) – 3D numpy array of detected windows. Shape is (N, H, W)
where N is the number of windows, H the height, and W
the width of each window.

	Returns

	2D numpy array containing the pileup (arithmetic mean) of
input windows.

	Return type

	numpy.array of floats

	
chromosight.utils.detection.remove_neighbours(patterns, win_size=8)

	Identify patterns that are too close from each other to exclude them.
The pattern with the highest score are kept in priority.

	Parameters

	
	patterns (numpy.array of float) – 2D Array of patterns, with 3 columns: bin1, bin2 and score.

	win_size (int [https://docs.python.org/3/library/functions.html#int]) – The maximum number of pixels at which patterns are considered
overlapping.

	Returns

	Boolean array indicating which patterns are valid (True values) and
which are overlapping neighbours (False values)

	Return type

	numpy.array of bool

	
chromosight.utils.detection.validate_patterns(coords, matrix, conv_mat, detectable_bins, kernel_matrix, drop=True, zero_tol=0.3, missing_tol=0.75)

	Given a list of pattern coordinates and a contact map, drop or flag
patterns in low detectability regions or too close to matrix boundaries.
Also returns the surrounding window of Hi-C contacts around each detected
pattern.

	Parameters

	
	coords (numpy.array of ints) – Coordinates of all detected patterns in the sub matrix. One pattern
per row, the first column is the matrix row, second column is the
matrix col.

	matrix (scipy.sparse.csr_matrix) – Hi-C contact map of the sub matrix.

	conv_mat (scipy.sparse.csr_matrix) – Convolution product of the kernel with the Hi-C sub matrix.

	detectable_bins (list of numpy.array) – List of two 1D numpy arrays of ints representing ids of detectable
rows and columns, respectively.

	kernel_matrix (numpy.array of float) – The kernel that was used for pattern detection on the Hi-C matrix.

	zero_tol (float [https://docs.python.org/3/library/functions.html#float]) – Proportion of zero pixels allowed in a pattern window to
consider it valid.

	missing_tol (float [https://docs.python.org/3/library/functions.html#float]) – Proportion of missing pixels allowed in a pattern window to
consider it valid.

	drop (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to discard pattern coordinates and windows from patterns which
fall outside the matrix or do not pass validation. If those are kept,
they will be given a score of np.nan and their windows will be filled
with np.nan.

	Returns

	
	filtered_coords (pandas.DataFrame) – Table of coordinates that passed the filters. The dataframe has 3:
columns: bin1 (rows), bin2 (col) and score (the correlation
coefficient).

	filtered_windows (numpy.array) – 3D numpy array of signal windows around detected patterns. Each window
spans axes 1 and 2, and they are stacked along axis 0.

	
chromosight.utils.detection.xcorr2(signal, kernel, threshold=0.0001, tsvd=None)

	Cross correlate a dense or sparse 2D signal with a dense 2D kernel.

	Parameters

	
	signal (scipy.sparse.csr_matrix or numpy.array of floats) – A 2-dimensional numpy array Ms x Ns acting as the detrended Hi-C map.

	kernel (numpy.array of floats) – A 2-dimensional numpy array Mk x Nk acting as the pattern template.

	threshold (float [https://docs.python.org/3/library/functions.html#float]) – Convolution score below which pixels will be set back to zero to save
on time and memory.

	tsvd (float [https://docs.python.org/3/library/functions.html#float] or None [https://docs.python.org/3/library/constants.html#None]) – If a float between 0 and 1 is given, the input kernel is factorised
using truncated SVD, keeping enough singular vectors to retain this
proportion of information. Factorisation speeds up convolution at
the cost of a loss of information. If the number of singular vectors
required to retain the desired information isDisabled by default.

	------- –

	out (scipy.sparse.csr_matrix or numpy.array) – Convolution product of signal by kernel. Same type as the input signal.

chromosight.utils.io module

Chromosight’s io submodule contains input/output related functions to load
contact matrices in cool format, and save output patterns coordinates and
windows.

	
chromosight.utils.io.check_prefix_dir(prefix)

	Checks for existence of the parent directory of an output prefix

	
chromosight.utils.io.download_file(url, file, length=16384)

	

	
chromosight.utils.io.load_bed2d(path)

	Loads only the first 6 columns of a 2D BED file. Will sniff for header
and generate a default header only if none is present.
Compatible with output of chromosight detect.

	Parameters

	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path to the 2D BED file.

	Returns

	The content of the 2D BED file as a dataframe with 6 columns. Header
will be: chrom1, start1, end1, chrom2, start2, end2.

	Return type

	pandas.DataFrame

	
chromosight.utils.io.load_cool(cool_path)

	Reads a cool file into memory and parses it into a COO sparse matrix
and an array with the starting bin of each chromosome.

	Parameters

	cool (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path to the input .cool file.

	Returns

	
	mat (scipy.sparse.coo_matrix) – Output sparse matrix in coordinate format

	chroms (pandas.DataFrame) – Table of chromosome information. Each row contains the name, length,
first and last bin of a chromosome.

	bins (pandas.DataFrame) – Table of genomic bins information. Each row contains the chromosome,
genomic start and end coordinates of a matrix bin.

	bin_size (int) – Matrix resolution. Corresponds to the number of base pairs per matrix bin.

	
chromosight.utils.io.load_kernel_config(kernel, custom=False)

	Load a kernel configuration from input JSON file.

All parameters associated with the kernel along its kernel matrices are
loaded into a dictionary.

A kernel config file is a JSON file with the following structure:

	{

	“name”: str,
“kernels”: [

str,
…

],
“max_dist”: int,
“min_dist”: int,
“max_iterations”: int,
“max_perc_zero”: float,
“max_perc_undetected”: float,
“pearson”: float
“resolution”: int

}

The kernels field should contain a list of path to kernel matrices to be
loaded. These path should be relative to the config file. When loaded, the
kernel field will contain the target matrices as 2D numpy arrays.

The kernel matrices files themselves are raw tsv files containing a dense
matrix of numeric value as read by the numpy.loadtxt function.

Other fields are:

	name : Name of the pattern

	max_dist : maximum distance in basepairs to scan from the diagonal

	max_iterations: maximum number of scanning iterations to perform

	max_perc_zero: Maximum percentage of empty (0) pixels to include a pattern

	max_perc_zero: Maximum percentage of missing (nan) pixels to include a pattern

	pearson: Increasing this value reduces false positive patterns.

	resolution: Basepair resolution for the kernel matrix.

	Parameters

	
	kernel (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the built-in pattern configuration to load if custom is
False. Otherwise, the path to the custom JSON configuration file to
load.

	custom (bool [https://docs.python.org/3/library/functions.html#bool]) – Determines if a custom JSON configuration file must be loaded, or if a
preset configuration is used.

	Returns

	kernel_config – A dictionary containing a key: value pair for each parameter as well as
list of kernel matrices under key ‘kernels’.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
chromosight.utils.io.progress(count, total, status='')

	Basic progress bar in terminal.

	Parameters

	
	count (float [https://docs.python.org/3/library/functions.html#float]) – Current task id.

	total (float [https://docs.python.org/3/library/functions.html#float]) – Maximum task id.

	status (str [https://docs.python.org/3/library/stdtypes.html#str]) – Info to write on the side of the bar.

	
chromosight.utils.io.save_windows(windows, output_prefix, fmt='json')

	Write windows surrounding detected patterns to a npy or json file. The
file contains a 3D array where windows are piled on axis 0, matrix rows are
on axis 1 and columns on axis 2.

	Parameters

	
	windows (numpy.array of floats) – 3D numpy array with axes (windows, rows, columns).

	output_prefix (str [https://docs.python.org/3/library/stdtypes.html#str]) – Output path where the file will be saved, an extension will be added
based on the value of “format”.

	format (str [https://docs.python.org/3/library/stdtypes.html#str]) – Format in which to save windows. Can be either npy for
numpy’s binary format, or json for a general purpose text
format.

	
chromosight.utils.io.write_patterns(coords, output_prefix, dec=10)

	Writes coordinates to a text file.

	Parameters

	
	coords (pandas.DataFrame) – Pandas dataframe containing the coordinates and score of
one detected pattern per row.

	pattern_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the pattern. Will be the basename of the output
file.

	output_dir (str [https://docs.python.org/3/library/stdtypes.html#str]) – Output path where the file will be saved.

	dec (int [https://docs.python.org/3/library/functions.html#int]) – Number of decimals to keep in correlation scores and p-values.

chromosight.utils.plotting module

Chromosight’s plotting submodule contains utilities to visualize the pileup
of detected patterns or the input matrix. It also implements an interactive map
recording the coordinates of double clicks.

	
chromosight.utils.plotting.click_finder(mat, half_w=8, xlab=None, ylab=None)

	Given an input Hi-C matrix, show an interactive window and record
coordinates where the user double-clicks. When the interactive window is
closed, the stack of windows around recorded coordinates is returned.

	Parameters

	
	mat (scipy.sparse.csr_matrix) – The input Hi-C matrix to display interactively.

	half_w (int [https://docs.python.org/3/library/functions.html#int]) – Half width of the windows to return. The resulting windows

	xlab (str [https://docs.python.org/3/library/stdtypes.html#str]) – Horizontal label to display below the matrix.

	ylab (str [https://docs.python.org/3/library/stdtypes.html#str]) – Vertical label to display next to the matrix.

	Returns

	3D stack of images around coordinates recorded interactively. The shape
of the stack is (N, w, w) where N is the number of coordinates and w is
2*half_w.

	Return type

	numpy.array

	
chromosight.utils.plotting.pileup_plot(pileup_pattern, output_prefix, name='pileup_patterns')

	Wrapper around matplotlib.pyplot.imshow to visualize the pileup of patterns
detected by chromosight

	
chromosight.utils.plotting.plot_whole_matrix(clr, patterns, out=None, region=None, region2=None, log_transform=False)

	Visualise the input matrix with a set of patterns overlaid on top.
Can optionally restrict the visualisation to a region.

	Parameters

	
	mat (scipy.sparse.csr_matrix) – The whole genome Hi-C matrix to be visualized.

	patterns (pandas.DataFrame) – The set of patterns to be plotted on top of the matrix. One pattern per
row, 3 columns: bin1, bin2 and score of types int, int and float,
respectively.

	region (str [https://docs.python.org/3/library/stdtypes.html#str]) – The genomic range, in UCSC format, corresponding to rows to be plotted
in the matrix. If not given, the whole matrix is used. It only region
is given, but not region2, the matrix is subsetted on rows and columns
to show a region on the diagonal.

	region2 (str [https://docs.python.org/3/library/stdtypes.html#str]) – The genomic range, in UCSC format, of columns to be plotted in the matrix.
Region must also be provided, or this will be ignored.

	log_transform (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to log transform the matrix.

	
chromosight.utils.plotting.print_ascii_mat(mat, adjust=True, colored=False, print_str=True)

	Given a 2D numpy array of float, print it in ASCII art.

	Parameters

	
	mat (np.array of floats) – Matrix to visualize.

	adjust (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to adjust the drawing size to termina width.

	colored (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to use colors.

	print_str (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, the ASCII art is printed to stdout, otherwise it
is stored in a string and returned.

	Returns

	An empty string is returned if print_str is True, otherwise the
ASCII art is returned as a string.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

chromosight.utils.preprocessing module

Chromosight’s preprocessing submodule implements a number of functions to
operate on Hi-C contact maps before detection. These functions can be used to
improve the signal or filter unneeded signal. There are also functions to edit
(zoom, crop, factorize) kernel matrices.

	
chromosight.utils.preprocessing.check_missing_mask(signal, mask)

	Ensure all elements defined as missing by the mask are set to zero in the
signal. If this is not the case, raises an error.

	Parameters

	
	signal (numpy.ndarray of floats or scipy.sparse.csr_matrix of floats) – The signal to be checked.

	mask (numpy.ndarray of bools or scipy.sparse.csr_matrix of bools) – The mask defining missing values as True and valid values as False.

	
chromosight.utils.preprocessing.crop_kernel(kernel, target_size)

	Crop a kernel matrix to target size horizontally and vertically.
If the target size is even, the target size is adjusted to the
next integer up.

	Parameters

	
	kernel (numpy.ndarray of floats) – Image to crop.

	target_size (tuple of ints) – Tuple defining the target shape of the kernel, takes the
form (rows, cols) where rows and cols are odd numbers.

	Returns

	cropped – New image no larger than target dimensions

	Return type

	numpy.ndarray of floats

	
chromosight.utils.preprocessing.detrend(matrix, detectable_bins=None, max_dist=None, smooth=False, fun=<function nanmean>, max_val=10)

	Detrends a Hi-C matrix by the distance law.
The input matrix should have been normalised beforehandand.

	Parameters

	
	matrix (scipy.sparse.csr_matrix) – The normalised intrachromosomal Hi-C matrix to detrend.

	detectable_bins (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Tuple containing a list of detectable rows and a list of columns on
which to perform detrending. Poorly interacting indices have been
excluded.

	max_dist (int [https://docs.python.org/3/library/functions.html#int]) – Maximum number of bins from the diagonal at which to compute trend.

	smooth (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to use isotonic regression to smooth the trend.

	fun (callable) – Function to use on each diagonal to compute the trend.

	max_val (float [https://docs.python.org/3/library/functions.html#float] or None [https://docs.python.org/3/library/constants.html#None]) – Maximum value in the detrended matrix. Set to None to disable

	Returns

	The detrended Hi-C matrix.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
chromosight.utils.preprocessing.diag_trim(mat, n)

	Trim an upper triangle sparse matrix so that only the first n diagonals
are kept.

	Parameters

	
	mat (scipy.sparse.csr_matrix or numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The sparse matrix to be trimmed

	n (int [https://docs.python.org/3/library/functions.html#int]) – The number of diagonals from the center to keep (0-based).

	Returns

	The diagonally trimmed upper triangle matrix with only the first
n diagonal.

	Return type

	scipy.sparse.dia_matrix or numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
chromosight.utils.preprocessing.distance_law(matrix, detectable_bins=None, max_dist=None, smooth=True, fun=<function nanmean>)

	Computes genomic distance law by averaging over each diagonal in the upper
triangle matrix. If a list of detectable bins is provided, pixels in
missing bins will be excluded from the averages. A maximum distance can be
specified to define how many diagonals should be computed.

	Parameters

	
	matrix (scipy.sparse.csr_matrix) – the input matrix to compute distance law from.

	detectable_bins (numpy.ndarray of ints) – An array of detectable bins indices to consider when computing
distance law.

	max_dist (int [https://docs.python.org/3/library/functions.html#int]) – Maximum distance from diagonal, in number of bins in which to compute
distance law

	smooth (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to use isotonic regression to smooth the distance law.

	fun (callable) – A function to apply on each diagonal. Defaults to mean.

	Returns

	dist – the output genomic distance law.

	Return type

	np.ndarray

Example

>>> m = np.ones((3,3))
>>> m += np.array([1,2,3])
>>> m
array([[2., 3., 4.],
 [2., 3., 4.],
 [2., 3., 4.]])
>>> distance_law(csr_matrix(m))
array([3. , 3.5, 4.])

	
chromosight.utils.preprocessing.erase_missing(signal, valid_rows, valid_cols, sym_upper=True)

	Given a sparse matrix, set all pixels in missing (invalid) bins to 0.

	Parameters

	
	signal (scipy.sparse.csr_matrix of floats) – Input signal on which to erase values.

	valid_rows (numpy.ndarray of ints) – Indices of rows considered valid (not missing).

	valid_cols (numpy.ndarray of ints) – Indices of columns considered valid (not missing).

	sym_upper (bool [https://docs.python.org/3/library/functions.html#bool]) – Define if the input signal is upper symmetric.

	Returns

	The input signal with all values in missing bins set to 0

	Return type

	scipy.sparse.csr_matrix

	
chromosight.utils.preprocessing.factorise_kernel(kernel, prop_info=0.999)

	Performs truncated SVD on an input kernel, returning the singular vectors
necessary to retain a given proportion of information contained in the
kernel.

	Parameters

	
	kernel (numpy.ndarray of floats) – The input 2D kernel to factorise.

	prop_info (float [https://docs.python.org/3/library/functions.html#float]) – Proportion of information to retain.

	Returns

	A tuple containing the truncated left and right singular matrices,
where each singular vector has been multiplied by the square root of
their respective singular values.

	Return type

	tuple of numpy.ndarrays of floats

	
chromosight.utils.preprocessing.frame_missing_mask(mask, kernel_shape, sym_upper=False, max_dist=None)

	Adds a frame around input mask, given a kernel. The goal of this
frame is define margins around the matrix where the kernel will not perform
convolution (denoted by 1). If the matrix is upper symmetric, a margin of
half the kernel’s width is added below the diagonal and a maximum distance
from the diagonal above which margins need not be drawn can be considered.
Otherwise Margins are simply added on all 4 sides of the matrix.

signal kernel _________
______ ____ |#######|
			==>	# #
		___		# #
		# #		
_____		# #		
 |#######|

	Parameters

	
	mask (scipy.sparse.csr_matrix of bool) – The mask around which to add margins.

	kernels_shape (tuple of ints) – The number of rows and kernel in the input kernel. Margins will be half
these values.

	sym_upper (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the signal is a symmetric upper triangle matrix. If so, values
on a margin below the diagonal will be masked.

	max_dist (int [https://docs.python.org/3/library/functions.html#int] or None [https://docs.python.org/3/library/constants.html#None]) – Number of diagonals to keep

	Returns

	framed_mask – The input mask with a padding of True around the edges. If sym_upper
is True, a padding is also added below the diagonal.

	Return type

	scipy.sparse.csr_matrix of bool

	
chromosight.utils.preprocessing.get_detectable_bins(mat, n_mads=3, inter=False)

	Returns lists of detectable indices after excluding low interacting bins
based on the proportion of zero pixel values in the matrix bins.

	Parameters

	
	mat (scipy.sparse.coo_matrix) – A Hi-C matrix in tihe form of a 2D numpy array or coo matrix

	n_mads (int [https://docs.python.org/3/library/functions.html#int]) – Number of median absolute deviation below the median required to
consider bins non-detectable.

	inter (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the matrix is interchromosomal. Default is to consider the
matrix is intrachromosomal (i.e. upper symmetric).

	Returns

	tuple of 2 1D arrays containing indices of low interacting rows and
columns, respectively.

	Return type

	numpy ndarray

	
chromosight.utils.preprocessing.make_missing_mask(shape, valid_rows, valid_cols, max_dist=None, sym_upper=False)

	Given lists of valid rows and columns, generate a sparse matrix mask with
missing pixels denoted as 1 and valid pixels as 0. If a max_dist is
provided, upper symmetric matrices will only be flagged up to max_dist
pixels from the diagonal.

	Parameters

	
	shape (tuple of ints) – Shape of the mask to generate.

	valid_rows (numpy.ndarray of ints) – Array with the indices of valid rows that should be set to 0 in the
mask.

	valid_cols (numpy.ndarray of ints) – Array with the indices of valid rows that should be set to 0 in the
mask.

	max_dist (int [https://docs.python.org/3/library/functions.html#int] or None [https://docs.python.org/3/library/constants.html#None]) – The maximum diagonal distance at which masking should take place.

	sym_upper (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the matrix is symmetric upper. If so, max_dist is ignored

	Returns

	The mask containing False values where pixels are valid and True valid
where pixels are missing

	Return type

	scipy.sparse.csr_matrix of bool

	
chromosight.utils.preprocessing.resize_kernel(kernel, kernel_res=None, signal_res=None, factor=None, min_size=7, quiet=False)

	Resize a kernel matrix based on the resolution at which it was defined and
the signal resolution. E.g. if a kernel matrix was generated for 10kb and
the input signal is 20kb, kernel size will be divided by two. If the kernel
is enlarged, pixels are interpolated with a spline of degree 1.
Alternatively, a resize factor can be provided. In the example above, the
factor would be 0.5.

	Parameters

	
	kernel (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Kernel matrix.

	kernel_res (int [https://docs.python.org/3/library/functions.html#int]) – Resolution for which the kernel was designed. Mutually exclusive with
factor.

	signal_res (int [https://docs.python.org/3/library/functions.html#int]) – Resolution of the signal matrix in basepair per matrix bin. Mutually
exclusive with factor.

	factor (float [https://docs.python.org/3/library/functions.html#float]) – Resize factor. Can be provided as an alternative to kernel_res and
signal_res. Values above 1 will enlarge the kernel, values below 1 will
shrink it.

	min_size (int [https://docs.python.org/3/library/functions.html#int]) – Lower bound, in number of rows/column allowed when resizing the kernel.

	quiet (bool [https://docs.python.org/3/library/functions.html#bool]) – Suppress warnings if resize factor was adjusted.

	Returns

	resized_kernel – The resized input kernel.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
chromosight.utils.preprocessing.set_mat_diag(mat, diag=0, val=0)

	Set the nth diagonal of a symmetric 2D numpy array to a fixed value.
Operates in place.

	Parameters

	
	mat (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Symmetric 2D array of floats.

	diag (int [https://docs.python.org/3/library/functions.html#int]) – 0-based index of the diagonal to modify. Use negative values for the
lower half.

	val (float [https://docs.python.org/3/library/functions.html#float]) – Value to use for filling the diagonal

	
chromosight.utils.preprocessing.subsample_contacts(M, n_contacts)

	Bootstrap sampling of contacts in a sparse Hi-C map.

	Parameters

	
	M (scipy.sparse.coo_matrix) – The input Hi-C contact map in sparse format.

	n_contacts (int [https://docs.python.org/3/library/functions.html#int]) – The number of contacts to sample.

	Returns

	A new matrix with a fraction of the original contacts.

	Return type

	scipy.sparse.coo_matrix

	
chromosight.utils.preprocessing.sum_mat_bins(mat)

	Compute the sum of matrices bins (i.e. rows or columns) using
only the upper triangle, assuming symmetrical matrices.

	Parameters

	mat (scipy.sparse.coo_matrix) – Contact map in sparse format, either in upper triangle or
full matrix.

	Returns

	1D array of bin sums.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
chromosight.utils.preprocessing.valid_to_missing(valid, size)

	Given an array of valid indices, return the corrsesponding array of missing
indices.

	Parameters

	
	valid (numpy.ndarray of ints) – The valid indices.

	size (int [https://docs.python.org/3/library/functions.html#int]) – The size of the matrix (maximum possible index + 1).

	Returns

	missing – The missing indices.

	Return type

	numpy.ndarray of ints

	
chromosight.utils.preprocessing.zero_pad_sparse(mat, margin_h, margin_v, fmt='coo')

	Adds margin of zeros around an input sparse matrix.

	Parameters

	
	mat (scipy.sparse.csr_matrix) – The matrix to be padded.

	margin_h (int [https://docs.python.org/3/library/functions.html#int]) – The width of the horizontal margin to add on the left and right of the
matrix.

	margin_v (int [https://docs.python.org/3/library/functions.html#int]) – The width of the vertical margin to add on the top and bottom of the
matrix.

	fmt (string) – The desired scipy sparse format of the output matrix

	Returns

	The padded matrix of dimensions (m + 2 * margin_h, n + 2 * margin_v).

	Return type

	scipy.sparse.csr_matrix

Examples

>>> m = sp.csr_matrix(np.array([[1, 2], [10, 20]]))
>>> zero_pad_sparse(m, 2, 1).toarray()
array([[0, 0, 0, 0, 0, 0],
 [0, 0, 1, 2, 0, 0],
 [0, 0, 10, 20, 0, 0],
 [0, 0, 0, 0, 0, 0]])

	
chromosight.utils.preprocessing.ztransform(matrix)

	Z transformation for Hi-C matrices.

	Parameters

	matrix (scipy.sparse.coo_matrix) – A Hi-C matrix in sparse format.

	Returns

	The detrended Hi-C matrix

	Return type

	scipy.sparse.coo_matrix

chromosight.utils.stats module

Chromosight’s stats submodule contains helper function to compute statistical estimators from distributions

	
chromosight.utils.stats.corr_to_pval(corr, n, rho0=0)

	Given a list of Pearson correlation coefficient,
convert them to two-sided log10 p-values. The p-values
are computed via the fisher transformation described
on: https://w.wiki/Ksu

	Parameters

	
	corr (numpy.array) – The Pearson correlation coefficients.

	n (int [https://docs.python.org/3/library/functions.html#int] or numpy.array) – The number of observations used to compute correlation
coefficients. Can be given as an array of the same size as corr
to give the number of sample in each coefficient.

	rho0 (float [https://docs.python.org/3/library/functions.html#float]) – The correlation value under h0. We test if corr is
significantly different from rho0.

	Returns

	The array of log10-transformed two-sided p-values,
same size as corr.

	Return type

	numpy.array

	
chromosight.utils.stats.fdr_correction(pvals)

	Applies false discovery rate correction via the
Benjamini-Hochberg procedure to adjust input p-values
for multiple testing. .

	Parameters

	pvals (numpy.array of floats) – Array of uncorrected p-values.

	Returns

	fdr – Array of corrected p-values (q-values).

	Return type

	numpy.array of floats

Module contents

 Python Module Index

 c

 		 	

 		
 c	

 	[image: -]
 	
 chromosight	

 	
 	
 chromosight.cli	

 	
 	
 chromosight.cli.chromosight	

 	
 	
 chromosight.kernels	

 	
 	
 chromosight.utils	

 	
 	
 chromosight.utils.contacts_map	

 	
 	
 chromosight.utils.detection	

 	
 	
 chromosight.utils.io	

 	
 	
 chromosight.utils.plotting	

 	
 	
 chromosight.utils.preprocessing	

 	
 	
 chromosight.utils.stats	

 	
 	
 chromosight.version	

Index

 B
 | C
 | D
 | E
 | F
 | G
 | H
 | K
 | L
 | M
 | N
 | P
 | R
 | S
 | V
 | W
 | X
 | Z

B

 	
 	bins_to_coords() (chromosight.utils.contacts_map.HicGenome method)

C

 	
 	capture_ouput() (in module chromosight.cli.chromosight)

 	check_missing_mask() (in module chromosight.utils.preprocessing)

 	check_prefix_dir() (in module chromosight.utils.io)

 	chromosight (module)

 	chromosight.cli (module)

 	chromosight.cli.chromosight (module)

 	chromosight.kernels (module)

 	chromosight.utils (module)

 	chromosight.utils.contacts_map (module)

 	chromosight.utils.detection (module)

 	chromosight.utils.io (module)

 	chromosight.utils.plotting (module)

 	chromosight.utils.preprocessing (module)

 	
 	chromosight.utils.stats (module)

 	chromosight.version (module)

 	click_finder() (in module chromosight.utils.plotting)

 	cmd_detect() (in module chromosight.cli.chromosight)

 	cmd_generate_config() (in module chromosight.cli.chromosight)

 	cmd_list_kernels() (in module chromosight.cli.chromosight)

 	cmd_quantify() (in module chromosight.cli.chromosight)

 	cmd_test() (in module chromosight.cli.chromosight)

 	compute_max_dist() (chromosight.utils.contacts_map.HicGenome method)

 	ContactMap (class in chromosight.utils.contacts_map)

 	coords_to_bins() (chromosight.utils.contacts_map.HicGenome method)

 	corr_to_pval() (in module chromosight.utils.stats)

 	create_mat() (chromosight.utils.contacts_map.ContactMap method)

 	crop_kernel() (in module chromosight.utils.preprocessing)

D

 	
 	destroy_mat() (chromosight.utils.contacts_map.ContactMap method)

 	detrend() (chromosight.utils.contacts_map.ContactMap method)

 	(in module chromosight.utils.preprocessing)

 	
 	diag_trim() (in module chromosight.utils.preprocessing)

 	distance_law() (in module chromosight.utils.preprocessing)

 	download_file() (in module chromosight.utils.io)

 	DumpMatrix (class in chromosight.utils.contacts_map)

E

 	
 	erase_missing() (in module chromosight.utils.preprocessing)

F

 	
 	factorise_kernel() (in module chromosight.utils.preprocessing)

 	fdr_correction() (in module chromosight.utils.stats)

 	
 	filter_foci() (in module chromosight.utils.detection)

 	frame_missing_mask() (in module chromosight.utils.preprocessing)

G

 	
 	gather_sub_matrices() (chromosight.utils.contacts_map.HicGenome method)

 	get_detectable_bins() (in module chromosight.utils.preprocessing)

 	
 	get_full_mat_pattern() (chromosight.utils.contacts_map.HicGenome method)

 	get_sub_mat_pattern() (chromosight.utils.contacts_map.HicGenome method)

H

 	
 	HicGenome (class in chromosight.utils.contacts_map)

K

 	
 	keep_distance (chromosight.utils.contacts_map.ContactMap attribute)

L

 	
 	label_foci() (in module chromosight.utils.detection)

 	load_bed2d() (in module chromosight.utils.io)

 	
 	load_cool() (in module chromosight.utils.io)

 	load_kernel_config() (in module chromosight.utils.io)

 	logo_version() (in module chromosight.cli.chromosight)

M

 	
 	main() (in module chromosight.cli.chromosight)

 	
 	make_missing_mask() (in module chromosight.utils.preprocessing)

 	make_sub_matrices() (chromosight.utils.contacts_map.HicGenome method)

N

 	
 	normalize() (chromosight.utils.contacts_map.HicGenome method)

 	
 	normxcorr2() (in module chromosight.utils.detection)

P

 	
 	pattern_detector() (in module chromosight.utils.detection)

 	pick_foci() (in module chromosight.utils.detection)

 	pileup_patterns() (in module chromosight.utils.detection)

 	pileup_plot() (in module chromosight.utils.plotting)

 	
 	plot_whole_matrix() (in module chromosight.utils.plotting)

 	preprocess_inter_matrix() (chromosight.utils.contacts_map.ContactMap method)

 	preprocess_intra_matrix() (chromosight.utils.contacts_map.ContactMap method)

 	print_ascii_mat() (in module chromosight.utils.plotting)

 	progress() (in module chromosight.utils.io)

R

 	
 	remove_diags() (chromosight.utils.contacts_map.ContactMap method)

 	
 	remove_neighbours() (in module chromosight.utils.detection)

 	resize_kernel() (in module chromosight.utils.preprocessing)

S

 	
 	save_windows() (in module chromosight.utils.io)

 	set_mat_diag() (in module chromosight.utils.preprocessing)

 	
 	subsample() (chromosight.utils.contacts_map.ContactMap method)

 	subsample_contacts() (in module chromosight.utils.preprocessing)

 	sum_mat_bins() (in module chromosight.utils.preprocessing)

V

 	
 	valid_to_missing() (in module chromosight.utils.preprocessing)

 	
 	validate_patterns() (in module chromosight.utils.detection)

W

 	
 	write_patterns() (in module chromosight.utils.io)

X

 	
 	xcorr2() (in module chromosight.utils.detection)

Z

 	
 	zero_pad_sparse() (in module chromosight.utils.preprocessing)

 	
 	ztransform() (in module chromosight.utils.preprocessing)

 _static/up-pressed.png

_static/up.png

_static/ajax-loader.gif

_static/chromosight_favicon.png

_static/comment-bright.png

nav.xhtml

 Table of Contents

 		
 Welcome to chromosight’s documentation!

 		
 Tutorial

 		
 Detection

 		
 Quantification

 		
 Generating custom patterns

 		
 A note on borders and kernels

 		
 Example use of chromosight quantify

 		
 Input data:

 		
 Getting loop scores

 		
 Analysing loop scores

 		
 Peeking at the input coordinates

 		
 Comparing the distribution of scores

 		
 Using different metrics

 		
 Comparison of loop footprints

 		
 Appendix: Generating a BED2D file

 		
 Plotting chromosight’s output

 		
 View the whole genome matrix

 		
 View a matrix region

 		
 Plot the distribution of scores

 		
 Looking at detected patterns

 		
 chromosight

 		
 chromosight package

 		
 Subpackages

 		
 Submodules

 		
 chromosight.version module

 		
 Module contents

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

